亚洲AV永久青草无码性色av,国产高清吃奶成免费视频网站,野花社区在线观看视频 ,青青草最新在线视频播放,2021av在线天堂网,57pao国产成视频免费播放,色窝窝无码一区二区三区2022,成人欧美日韩一区二区三区
Welcome to the official website of TUNGSON ELECTRONIC MACHINERY LTD!
Collect this site | Return to homepage | Contact Us | Website Map |  Chinese
Popular searches on this site: AI automatic plugin machine Irregular plug-in machine Plug in machine manufacturer
Contact Us
TUNGSON ELECTRONIC MACHINERY LTD
Address: 5th Floor, Building B1, Songhu Zhigu Research Center, No. 6 Minfu Road, Liaobu Town, Dongguan City, Guangdong Province
Tel:0769-85389385
Fax:0769-85411416
E-mail:sales@tungson.hk
Are voids in SMT solder joints a problem?
Time:2024-12-01 18:12:35Source: Dongshun Automation Click: 112

The IPC Solder Product Value Association (SPVC) conducted a reliability study to determine whether the performance of various tin silver copper (SAC) alloys in lead-free alloys is equivalent in assembly, metallographic analysis and basic characteristics, thermal shock and temperature cycling. The conclusion of SPVC is that the performance of the three SAC alloys is not significantly different, and it is recommended to use SAC 305 as the preferred lead-free alloy in the electronics industry. Another result of this study is that when analyzing test boards using SAC lead-free solder paste, voids were detected. The cavity was marked on the test circuit board, but it was not repaired. In this case, the test circuit board was subjected to thermal shock and temperature cycling. The voids have also undergone thermal shock and temperature cycling, and SPVC also compares the voids in the solder joints.

The debate about solder joints

It is widely recognized in the electronics manufacturing industry that voids commonly seen in X-ray images may be a factor in classifying solder joints as non-conforming, especially when the size of the void exceeds 25% of the solder joint - especially when voids appear in BGA.

There has always been controversy in the electronic assembly industry regarding voids in solder joints. With the shift towards lead-free, controversy is becoming increasingly intense. The reason is that lead-free solder joints are more prone to forming voids than tin lead solder joints; Moreover, the percentage of voids in SAC alloy is higher than that in other lead-free alloys.

Test plan

Two types of lead-free circuit boards were used for testing in the IPC SPVC testing project: lead-free test board A * and lead-free test board B * *. The solder paste used for these two test boards is not specifically selected, but the same soldering flux is used. This way? Where is the beauty of Yan Mu? Private meal with hairy toes and sandpipers? Lai Mou Zhen Tian N Yi knocked and waved his surname, "Father of the Imperial Academy, how do you complain and fight? Apricot vomit??

In the lead-free test board A *, voids with an area exceeding 25% were observed on all circuit boards assembled using three types of SAC alloy solder paste, particularly on CSP84 lead-free components with a spacing of 0.5mm. The circuit board assembled with tin lead alloy clearly has voids, but on CSP84 components assembled with tin lead alloy with a spacing of 0.5mm, the void area is less than 25%.

On lead-free test board B * *, it was observed that the void area exceeded 25% on all circuit boards assembled with SAC alloy. On the circuit board, the voids in PBGA196, C-CSP224, and chip level package CSP8 all exceed 25%.

In order to determine the impact of voids on the reliability of solder joints, the testing scheme adopted by IPC SPVC includes the commonly recognized conventional temperature cycling and thermal shock in the entire industry. Environmental tests were conducted on both sets of test boards, and their functionality was monitored during the testing period. The test board includes circuit boards from two companies, each with four sets of forty boards. Three types of SAC solder alloy compositions and one low melting point (tin lead) solder are used for comparison. Each group took out a plate for destructive metallographic analysis, and this test plate did not participate in the temperature cycling study.

The temperature cycling scheme used reflects the IPC testing method. This temperature cycling scheme first maintains a low temperature (0 ℃) for ten minutes, then slowly rises the temperature to 100 ℃, and then maintains this high temperature for ten minutes before gradually returning to the low temperature state. The entire temperature cycle usually takes about 60 minutes. The cycle time is related to the time it takes for the furnace temperature to rise and the temperature stabilization process of the test board.

The thermal shock test plan is very similar to the one specified by JEDEC, which first maintains a low temperature (-55 ℃) for five minutes, then maintains a high temperature (125 ℃) for ten minutes, and then returns to the low temperature. The total cycle time is about 20 minutes. This cyclic process repeats continuously. Two sets of test samples were subjected to metallographic analysis after 500 temperature cycles per set.

test result

After environmental testing, this study compared the X-ray analysis results of the cavity, comparing the failure situation after 6000 temperature cycles, thermal shock, metallographic examination of both failed and normal solder joints, and comparing the results of metallographic examination. From these comparisons, and using several different statistical methods to compare temperature failure data and void location and size, we can clearly see that voids will not have any impact on the integrity of the solder joint.


After every 500 temperature cycles, remove the circuit board and perform penetrative X-ray imaging on each component on each circuit board. From this image, we can see that there are far more voids in SAC alloy solder joints than in tin lead alloy solder joints. In terms of quantity and size, CSP84 packaging solder joints have more voids than other array packaging solder joints. Comparing the cross-sectional images of packages that have undergone temperature cycling, we cannot see any clear correlation between voids and connection failure. For example, large voids can be seen in the cross-sectional view of the SAC 305 solder joints on test board A *, but this does not necessarily mean that these voids will cause connection failure - although this package has undergone 4500 temperature cycles.

On lead-free test board A *, for 84 input/output CPS packages with a spacing of 0.5mm, there are quite a few solder joint failures caused by creep fatigue caused by temperature cycling. From this, two parameters can be obtained, namely Weibull slope (β) and characteristic life (η) values. Figure 1 is a Weibull plot of the failure distribution of CSP84 packaging. The Weibull distribution indicates that the characteristic lifespan of SAC alloy solder joints is longer than that of tin lead solder joints (SAC alloy has 4713 to 6810 temperature cycles, while tin lead alloy has 1595 temperature cycles). However, on the circuit board without monitoring, the through X-ray images and cross-sectional views of every 500 temperature cycles indicate that there are significantly more and larger voids in the SAC alloy solder joints than in the SnPb solder joints. It is precisely because of this that each CSP84 package was inspected with X-rays after 6000 temperature cycles. We attempted to correlate the number of temperature cycles at which voids occurred with the occurrence of failure. Figure 2 shows Weibull values and η values. These statistical results were obtained from 24 CSP84 packages and 60 CSP84 packages. The 24 CSP84 packages were part of the IPC SPVC reliability test, while the 60 CSP84 packages were part of the reliability test for test board A. In an analysis, there were significant voids in the SAC387 solder joints assembled using conventional remelting techniques. However, there is no particularly significant difference in the characteristic lifespan of solder joints.

conclusion

We compared the number of voids and temperature cycles at which failure occurred in SAC connections based on the data provided by the IPC SPVC reliability research project on SAC alloys. We used eight independent statistical analysis methods (box plot, one-way ANOM, main rendering, matrix plot, etc.) to compare the number of cycles when a void exceeds 25% of the connection area and the number of temperature cycles when a void occurs. The comparison between the distribution of voids and the number of failure cycles indicates that voids do not affect the reliability of solder joints.

The number and size of voids in the solder joints were compared with the connection failure in temperature cycling data, and the conclusion is that there is no evidence to prove that voids in such SAC alloy solder joints will affect the reliability of the solder joints.


Prev14 principles of SMT zero defects  Next Next:What should be noted when selecting SMT surface mount machines?
Copyright ? 2025 TUNGSON ELECTRONIC MACHINERY LTD Technical support:Tuohai Network
13829276376
主站蜘蛛池模板: 亚洲伊人久久大香线蕉| 国产精品_九九99久久精品| 亚洲精品无码乱码成人| 色综合av社区男人的天堂| 国产成人亚洲综合a∨| 国内精品久久人妻无码网站| 成人午夜视频一区二区无码 | 东京热大乱系列无码| 欧美国产成人久久精品| 国产又色又爽又黄的视频在线| 中年国产丰满熟女乱子正在播放| 日本熟妇色熟妇在线视频播放| 精品女同一区二区三区免费站| 亚洲精品久久久无码一区二区| 午夜无码福利伦利理免| 亚洲性人人天天夜夜摸| 久久精品av国产一区二区| 午夜国人精品av免费看| 国内精品伊人久久久久av| 亚洲国产aⅴ综合网| 日本强伦片中文字幕免费看| 热99re久久精品国产首页免费| 亚洲欧美成人久久综合中文网 | 少妇人妻激情乱人伦| 亚洲浮力影院久久久久久| 久久精品国产自清天天线| 国产成人免费无庶挡视频| 亚洲精品av一区在线观看| 又爽又黄无遮挡高潮视频网站| 亚洲精品国产情侣av在线| 久久精品国产中国久久| 精品高潮呻吟99av无码视频| 国产精品视频免费一区二区| 欧美 亚洲 另类 综合网| 大伊香蕉精品视频在线| 2020天堂在线亚洲精品专区| 久久综合精品国产丝袜长腿| 国产在线精品国偷产拍| 不卡一卡二卡三乱码免费网站| 国产精品亚洲专区无码第一页| 亚洲大尺度专区无码浪潮av|